
Minimizing overhead in distributed
computing: Application for expensive

optimization problem

Teppo Tammisto

Techila Technologies Ltd

Juho Kanniainen
Tampere University of Technology

2019-07-05

1 Introduction
Numerical optimization has a central role in many fields of applied mathematics ranging from
quantitative finance to control theory. Sometimes the loss function –an objective to be minimized–
can be computationally expensive, which calls need for the use of high-performance computing
(HPC) to speed up the optimization. This document describes how we can innovatively accelerate
the optimization in a case where the evaluation of the loss function can be parallelized into
independent sub-tasks. By exploiting Techila Distributed Computing Engine middleware, we propose
a solution to speed-up an optimization procedure when the loss-function is expensive and its
calculation can be distributed.

The use of distributed computing for iterative problems, such as for optimization, is not very
straightforward. Particularly, existing algorithmic approaches can suffer from iterative information
transfers that take place between the computational environment, such as a cloud or private grid,
and end-user workstation. Hereafter, we use ‘workstation’ to refer to a computer where the end-
user is logged in in general. Respectively, we use ‘cloud’ to refer to a computational environment in
general.

This communication between the cloud and the workstation can be relatively slow, having
higher latency compared to internal communication between the computer nodes within the cloud.
Additionally, existing algorithmic approaches may need to create a new subtask for each
optimization iteration, and consequently, computer nodes in the cloud need to be reactivated and
deactivated in each optimization iteration, which can cause significant overhead. The third
drawback of these existing algorithmic approaches is that in multi-user environments, resources can
be occupied by another user between the optimization iterations, meaning that an optimization
task can lose its place in the queue between the iterations.

http://www.techilatechnologies.com/

In our new algorithmic approach, all operations related to the optimization process are
performed within the cloud. The principle of the design approach is to:

i. offload the optimization routine from the workstation to the cloud,
ii. offload the loss-functions to the cloud,

iii. connect the loss-functions to the optimization routine while
iv. providing feedback from the optimization routines progress to the end-user

This is in contrast with existing approaches where the optimization routine is managed by

the individual end-user’s workstation, which is physically outside of the cloud, thus causing
unnecessary overhead and delay. The goal of our proposed approach is to i) minimize the overhead
from data transfer between nodes in the cloud environment and the end-user workstation and ii)
minimize the overhead caused by iterative initializations and finalizations of computing nodes in
every optimization iteration.

This paper discussed how to use Techila Distributed Computing Engine (TDCE) technology to
implement the new algorithmic approach to distribute computationally expensive optimization
problems into the cloud, and benchmarks the performance of the proposed design and the current
design.

TDCE is a software solution that is developed by Techila Technologies Ltd. The technology is
based on a patented Autonomic Computing architecture. It enables scalable interactive HPC runs in
a way that adheres to the proposed design approach, providing functionality to:

i) use programming language specific APIs to push workloads to the cloud,
ii) automatically install and configure required software on the cloud,
iii) transfer data directly between computer nodes within the cloud and
iv) display interactive feedback information from the optimization routines to the end-user

2 Architecture of the Techila Environment in the Distributed Procedures
Figure 1 illustrates the architecture of Techila Distributed Computing Engine (TDCE) that consists of
three logical main components:

i) Techila Server – Manages the computing environment and acts as the communication
endpoint for the end-user. Also delivers the subtasks received from the end-user to the
Techila Workers.

ii) Techila Workers – Computer nodes in the cloud (or another public or private
computational environment), which provide computational capacity to calculate the
optimization tasks. These nodes can communicate with each other within the cloud to
share and transfer computational data.

iii) Techila SDK – Software Development Kit that is installed on the end-user’s workstation,
providing programming language specific APIs that can be used to push computational
workloads to the cloud.

Computation Environment

Secure Connection

Figure 1: Computation environment with Techila. TDCE offers built-in security between all system components (TLS,
PKI).

The system design of TDCE is built around a highly modular service-oriented architecture (SOA)

with module lifecycle management. The solution has a Techila Worker-centric solution architecture
with autonomic management to support scalability and fault tolerance in loosely coupled
distributed operating environments.

http://www.techilatechnologies.com/help/techila-distributed-computing-engine/security-statement-techila-distributed-computing-engine.html
http://www.techilatechnologies.com/help/techila-distributed-computing-engine/product-description-techila-distributed-computing-engine.html

3 Optimization Problem with Distributed Computing
In this section, we demonstrate both the existing approaches and our proposed approach to solve
an optimization problem using distributed computing. We are focusing on a problem, where the
loss-function is computationally expensive, but can be solved using distributed computing.
Generally, this framework is appropriate for any loss function that requires numerical methods that
can be parallelized, such as Monte Carlo methods or series expansion methods. In finance, such
loss-functions can be found, for example, in the calibration of financial option pricing models (see
Christoffersen and Jacobs 2004a, 2004b, Kanniainen and Piché 2012, Kanniainen et al. 2014, and
Yang and Kanniainen 2016).

We consider an optimization problem with a loss-function of the form of

𝑓(𝒙) = (𝑔(𝒙) − 𝑔̂)2,

where 𝑔(𝒙) is a function of parameters 𝒙 ∈ ℝ𝒌×𝟏 and 𝑔̂ represents given observations. 𝑔(𝒙) and 𝑔̂
can be understood as model solution and correct (observable) solution, respectively, and the
objective of the optimization problem is to find (model) parameters 𝒙 that minimize the error. Our
distribution approach is suitable when 𝑔(𝒙) is computationally expensive and can be evaluated in
a distributed way. As an example, we calibrate an option pricing model against actual option market
quotes. Under our stochastic model, the pricing of options requires the use of Monte-Carlo methods
and, more importantly, the Monte Carlo paths can be distributed into subtasks to be run
independently on separate computer nodes. The proposed approach can be used for other kind of
problems, too, as long as

- The computation of a loss-function is an embarrassingly parallel problem (for embarrassingly
parallel problems, see, for example, Wilkinson and Allen 1999), were it based on Monte-
Carlo or other numerical methods.

- An optimization algorithm is iterative, such as Nelder-Mead algorithm (see Lagarias et al.
1998) or Gradient Methods (for a review of Gradient Methods, see Ruder 2016).

Our example provided in Section 4 shows that the overhead is quite remarkable in terms of both
wall-clock and CPU times. Next, we will demonstrate the optimization procedures under the
following conditions:

i) Optimization without distribution.
ii) Optimization with distribution so that the optimization is managed by the end-user

workstation and nodes are initialized and finalized in each optimization iteration. This is
called Approach A. This approach is employed for example in (Kanniainen and Piché
2013, Kanniainen et al. 2014)

iii) Optimization with a distribution approach, where the optimization is managed by one of
the nodes in the cloud and all information transfer happens between nodes within the
cloud, and the nodes are initialized and finalized only once (at the beginning and end of
the whole optimization project). This is called Approach B.

3.1 Optimization without distribution
Figure 2 demonstrates the standard optimization procedure on a single local workstation without
distributed computing. The optimization procedure contains of 𝑀 optimization iterations at the
most. In each optimization iteration, loss-function value 𝑓(𝒙) = (𝑔(𝒙) − 𝑔̂)2 is computed using
numerical methods, say, obtained with 𝑁 Monte-Carlo iterations.

Are optimization
criteria met?

Solve g(x) with N Monte Carlo
iterations

Return x and y

x = optimizationAlgorithm(LossFunc, x0)

x = x0 Update the parameter
values to x* for a new

evaluationx = x*

yes

Return y := f(x)
f(x) = (g(x)-g)

no

Figure 2. Optimization without distribution.

Particularly, the steps are following:

1. Evaluation: For given initial parameter values, 𝒙 ← 𝒙𝟎, solve 𝑔(𝒙) (with 𝑁 Monte-Carlo
iterations) and calculate the corresponding loss-function value 𝑓(𝒙) = (𝑔(𝒙) − 𝑔̂)2.

2. Criteria check: If optimization criteria are met, the optimization procedure is completed.
3. Optimization: If given criteria are not met, update parameter values, 𝒙 ← 𝒙𝒊, where 𝑖 refers

to 𝑖th optimization iteration.
4. Re-evaluation: Calculate a new value for the loss function (with Monte-Carlo).
5. Repeat 3-4 until the criteria are met or until 𝑀 optimization iterations are performed.1

Overall, the procedure is just about sequential evaluation of the loss-function that is performed with
a single workstation only.

3.2 Optimization with distributed computing: Approach A (optimization managed by end-
user’s workstation)

Figure 3 demonstrates the optimization procedure managed by end-user’s workstation utilizing a
distributed computing in the cloud. Here it is the End-user’s workstation that runs the iterative
optimization algorithm and sends the subtasks to the computer nodes in the cloud between each
optimization iteration. Because the optimization algorithm is iterative, the loss-function is evaluated
sequentially, and more importantly, each loss-function evaluation is considered as a separate
project in terms of distribution. Particularly, at the beginning of each optimization iteration, 𝑁
Monte Carlo paths are distributed for 𝑛 nodes. Essentially, in this approach, the nodes are
reactivated at the beginning of each optimization iteration and deactivated at the end of each
iteration. Reactivation and deactivation are called as initialization and finalization. Also, there is
information transfer between the end-user’s workstation and the nodes in a cloud at the beginning

1 Different optimization algorithms have different strategies to update the parameters, which is
not the focus of this document.

and end of each optimization iteration. Both iterative initializations and finalizations and
information transfer between local end-user’s workstation and cloud require extra computing
capacity and time, which increases the overhead in distributed computing.

Are optimization
criteria met?

Return x and y

x = optimizationAlgorithm(LossFunc, x0)

Update the parameter
values to x* for a new

evaluation

Solve g(x) with N/n Monte
Carlo iterations

Return y := f(x)
f(x) = (g(x)-g)

x = x* x = x0

(Re-)activate node

Inactivate node

Node i,
i = 1, 2, , n

yes

no

Figure 3. Optimization with Approach A. Activities on a local End-User’s workstation are indicated by blue color and

activities performed in the cloud by red color.

More specifically, the steps are following:

1. Evaluation
a. Initialization: Activate 𝑛 nodes (for simplicity, each node for one subtask)
b. Distribute 𝑁 Monte-Carlo iterations into 𝑛 subtasks.
c. For given initial parameter values, 𝒙 ← 𝒙𝟎, solve 𝑔(𝒙) with 𝑁/𝑛 Monte-Carlo

iterations in each node.
d. Aggregate results to obtain the value of the loss function, 𝑓(𝒙) = (𝑔(𝒙) − 𝑔̂)2.
e. Finalization: Inactivate all the nodes.

2. Criteria check: If the criteria are met, the optimization procedure is completed. Stop.
3. Optimization: If given criteria are not met, update parameter values, 𝒙  𝒙𝒊, where 𝑖 refers

to 𝑖th optimization iteration.
4. Re-evaluation: Calculate a new value for the loss function with new parameter values

according to step 1.
5. Repeat 3-4 until the criteria are met or until M optimization iterations are performed.

As the above steps and Figure 3 illustrate, the distributed implementation has additional sub-steps
under the loss-function evaluation step. Particularly, the evaluation of a loss-function value is
distributed across 𝑛 nodes that are first activated. That is, 𝑁 Monte-Carlo iterations are distributed
into 𝑛 independent subtasks such that one node carries out one subtask.2 End-user’s workstation
delivers information about subtasks to the nodes via the server and once the realizations of each
subtask are available, the results are aggregated and the evaluated value of the loss-function is sent
to the end-user workstation that runs the optimization algorithm. Finally, at the end of the
evaluation step, nodes are deactivated. Once the optimization algorithm changes parameter values,
the nodes are reactivated and the procedure of the evaluation step described above is applied again.
This procedure is repeated as long as optimization criteria are met or optimization is stopped for
another reason.

3.3 Optimization with distributed computing: Approach B (optimization managed within
cloud)

The distribution scheme in Approach A described in Figure 3 is problematic especially because:

- There is information transfer between nodes and end-user workstation before and after
each optimization iteration.

- New jobs are created and nodes are reactivated and deactivated for each optimization
iteration.

- In multi-user environments, resources can be occupied by another user between then
optimization iterations.

Figure 3 elaborates the idea of a new way to implement optimization procedures with distributed
computing with Approach B in Techila environment. The steps are the following:

1. Initialization: Activate n nodes (for simplicity, one subtask for each node)
a. The first node, so-called Master Node, is dedicated for

i. the management of the optimization algorithm,
ii. the management of the distribution of subtasks to other nodes,

iii. the computation of the 𝑁/𝑛 realizations of 𝑔(𝒙) for one subtask,
iv. the aggregation of results from other nodes to obtain the value of 𝑓(𝒙) =

(𝑔(𝒙) − 𝑔̂)2.
b. The other 𝑛 − 1 nodes, so-called co-nodes, are dedicated for

i. the computation of the 𝑁/𝑛 realizations of 𝑔(𝒙) for each subtask,
ii. the sending of the results to the master node.

2. Evaluation:
a. Master node: Distribute 𝑁 Monte-Carlo iterations into n subtasks and send 𝑛 − 1

subtasks to other nodes.
b. Master node: For given initial parameter values, 𝒙 ← 𝒙𝟎, solve 𝑔(𝒙) with 𝑁/𝑛

Monte-Carlo iterations.
c. Co-nodes:

2 In fact, one node could carry out several subtasks, but for simplicity, we assume that one there is
one subtask for each node.

http://www.techilatechnologies.com/

i. In each co-node, for given initial parameter values, 𝒙 ← 𝒙𝟎, solve 𝑔(𝒙) with
𝑁/𝑛 Monte-Carlo iterations.

ii. Wait until the next task
d. Master node: When all results are completed by all the nodes, aggregate the results

from other nodes and itself to obtain the value of 𝑓(𝒙). In Figure 3, this is
demonstrated by a line from “return <g>” to “average of <g>”.

3. Criteria check with the master node: If the criteria are met, the optimization procedure is
completed. Go to step 7.

4. Optimization with the master node: If given criteria are not met, update parameter values,
𝒙  𝒙𝒊, where 𝑖 refers to 𝑖th optimization iteration.

5. Re-evaluation with all the nodes, managed by the master node: Calculate the new value of
the loss function with new parameter values according to step 2.

6. Repeat 3-5 until the criteria are met or until 𝑀 optimization iterations are performed.
7. Finalization: Deactivate all the nodes.

Also in this this approach, 𝑁 Monte-Carlo iterations are distributed into 𝑛 independent subtasks
such that one node carries out one subtask. However, the distribution, and in fact, the overall
optimization procedure, is managed by the master node within the cloud, instead of end-user’s
workstation. End-user’s workstation delivers information about the optimization problem only at
the beginning of the project and then directly receives the final results at the end of the project. The
optimization procedure has the same principle as before, but now there is no need to reactivate
nodes in the course of the optimization procedure.

There are clear advantages for Approach B over Approach A. First, optimization algorithm is
managed by the master node within the same computation environment (cloud) with other nodes,
which leads to faster information transfer. In Approach A, the optimization algorithm is run on the
end-user workstation and therefore there is need for communication between the end-user
workstation and computation environment between each optimization iteration. Second, the
frequency of communication is drastically lower. Third, in the proposed approach, the initialization
and finalization are done once, just at the beginning and at the end of the whole optimization
procedure, whereas in the existing approach, initialization and finalization are done in each
optimization iteration. Each initialization takes wall-clock time but also uses CPUs. Therefore,
Approach B leads not only faster but also cheaper results.

Are optimization
criteria met?

Update the parameter
values to x* for a new

evaluation

x = optimizationAlgorithm(LossFunc, x0)

Solve g(x) with with N/n Monte
Carlo iterations

copy <x> from
Node 1

x==<break>

Send <break> to all i

Average of <g>

return

true

Send <x> to all co-
nodes

Master Node, no:1
Node i,
i = 2, 3, , n

x = x0

Solve g(x) with N/n Monte Carlo
iterations

Return g(x)

Return x and y

Return g(x)

Return y := f(x)
f(x) = (g(x)-g)

Activate nodes

Inactivate nodes

yes

yes

no

false

Figure 4: Optimization with Approach B using Techila middleware. Dashed lines represent information transfer between
the master node and the co-nodes. Activities on a local End-User’s workstation are indicated by blue color and activities
performed in the cloud by red color.

4 Case: Calibration of option pricing model
To demonstrate the computational performance of the suggested distribution procedure with
Approach B against Approach A, we calibrate a stochastic volatility option pricing model by
minimizing error between model’s implied volatilities and implied volatilities observed at option
markets.

4.1 Data
The data is an empirical snapshot of S&P 500 index options on the 20th of January, 2006, at 12:00pm.
Particularly, in the calibration exercise, we use an implied volatility surface that is fitted for observed
implied volatilities out-of-the-money put and call option mid-prices. The range of moneyness (the
strike price divided by the current index value) is 0.5 and 1.5 (consequently, the range of the log-
moneyness is -0.7 and 0.4). The maturity time is from 0.25 to 2 years. The resulting implied volatility
surface is demonstrated in Figure 4.

Figure 4: Empirical implied volatility surface for S&P 500 index options, which is used for option pricing model
calibration. The time of the observation of mid-prices of out-of-the-money call and put options is the 20th of January,

2006, 12:00pm.

4.2 Option Pricing Model
We calibrate a model that can be seen as a non-affine generalization of Heston model (see Heston
1993, Yang and Kanniainen 2017). Let {𝑆𝑡; 𝑡 ≥ 0} denote the price of an underlying asset (say, S&P
500) and {𝑉𝑡; 𝑡 ≥ 0} denote the instantaneous squared volatility of the returns. Under the risk
neutral measure, we assume that the return and volatility dynamics are described by the following
stochastic differential equations:

 𝑑 log(𝑆𝑡) = (𝑟 −
1

2
𝑉𝑡) 𝑑𝑡 + √𝑉𝑡𝑑𝑊𝑌,𝑡, (1.a)

 𝑑𝑉𝑡 = 𝜅(𝜃 − 𝑉𝑡)𝑑𝑡 + 𝜉𝑉𝑡
𝛾

(𝜌𝑑𝑊𝑌,𝑡 + √1 − 𝜌2𝑑𝑊𝑉,𝑡), (1.b)

where 𝑊𝑌 and 𝑊𝑉 are mutually independent Brownian motions and 𝑆0 = 𝑠0 > 0 and 𝑉0 = 𝑣0 > 0.
In addition, in the volatility process 𝜅 > 0 is the speed of the mean-revision, 𝜃 > 0 is long-run
variance, 𝜉 > 0 is the volatility of volatility, 𝜌 ∈ [−1,1] the correlation between returns and
volatility, and 𝛾 > 0 the coefficient to make the model affine (𝛾 = 0.5) or non-affine (otherwise).
Finally, 𝑟 is the constant risk-free interest rate.
 The extant literature provides strong empirical evidence that non-affine models affine (𝛾 ≠
0.5) outperform affine ones (𝛾 = 0.5) (Christoffersen et al., 2010; Kaeck and Alexander, 2012;
Kanniainen et al., 2014; Yang and Kanniainen, 2016). On the other hand, non-affine models do not
generally have numerically efficient solutions (e.g. semi-closed form FFT) and practically Monte-
Carlo methods must be used.

0.05

0.1

0.15

-1

0.2

0.25

0.3

0.35

-0.5 21.50 10.50.5 0

4.3 Calibration Settings
The optimization problem is to find model parameters Θ = {𝜅, 𝜃, 𝜉, 𝜌, 𝛾} and spot volatility 𝑣0 by
minimizing the squared error between implied volatility yielded by the model and observed from
markets:

IV-RMSE(Θ, 𝑣0) = 100 × √
1

𝑚
∑[IV𝑖(Θ, 𝑣0) − IV̂𝑖]

2

𝑖

,

where IV𝑖(Θ, 𝑣0) is the “model implied volatility” of 𝑖th option given by the model (Equations 1.a

and 1.b) with parameters Θ and spot volatility 𝑣0. Correspondingly, IV̂𝑖 is the “market implied
volatility” for 𝑖th option observed in the implied volatility surface constructed using the market
data. Moreover, 𝑚 is the number of implied volatility observations used for the calibration.
 In this paper, the optimization is based on MATLAB’s fminsearch function, provided in
the optimization toolbox, to minimize IVRMSE. fminsearch uses a derivative-free Nelder-

Mead simplex algorithm (Lagarias et al., 1998). Because the method itself is unconstrained, we
crafted constrains in such a way that the loss function (Eq. 2) gets very high values (1e10) if the
parameters or spot variance are out of the given boundaries.

4.4 Monte-Carlo Settings
In Monte-Carlo pricing, we use three variance reduction methods: (i) Black-Scholes price

serves as a control variate (see e.g. Glasserman, 2013, Ch. 4.1); (ii) antithetic variates (see e.g.
Glasserman, 2013, Ch. 4.2) are used for both return and volatility processes; and (iii) we implement
Empirical Martingale Simulation method, introduced by Duan and Simonato (1998). The Monte-
Carlo simulation is implemented efficiently so that one can compute a cross-section of options with
different strike prices by one run, and therefore, the range of the moneyness in the volatility surface
does not essentially affect the computation time. The most important factor is maturity time; if fact,
the paths are simulated according to the longest maturity time, and therefore, if a single option
contract with a long maturity time can increase the computational time considerably.

The prices of at-the-money options can be accurately solved with Monte-Carlo methods with
a reasonable low number of Monte-Carlo iterations, say with 10,000 iterations. However, the pricing
of deep-out-of-the money calls (and deep-in-the-money puts) can require a huge number of
iterations, even if all the three variance methods are exploited. This is demonstrated in Figure 5,
which is based on 10,000 iterations; for short-term and low-moneyness (high 𝐾/𝑆0) options, implied
volatilities are not always available. This is quite intuitive, because a call option is priced at zero if
no any of the Monte-Carlo paths of the underlying asset hits the level of the strike price. To price
these options correctly, in our experience, one may need even Monte-Carlo 1 million paths, which
is computationally quite expensive. On the other hand, deep-out-of-the-money calls (deep-in-the-
money puts) can provide very important information for model calibration, and therefore they
should not be excluded from the model calibration data set. Consequently, we calibrate the model
(Eq 1.a, 1.b) using 1 million iterations, which, at the same time, makes the exercise as a good case
study as we have an optimization problem with a computationally expensive loss-function.

Figure 5: Empirical implied volatility surface and model-based surface with 10,000 Monte-Carlo iterations. Market
implied volatilities are represented with the colored (non-transparent) surface and model-based implied volatilities with
the transparent surface. The figure shows that 10,000 Monte-Carlo paths is not necessarily enough for the pricing of
deep-out-of-the-money calls (deep-in-the-money puts).

4.5 Infrastructure and distribution settings
We use 10 nodes (instances) on Azure Cloud, which are type of D2v3. Nodes have 8 GiB of memory
and 2 vCPUs. Dv3-series sizes are based on the 2.3 GHz Intel XEON ® E5-2673 v4 (Broadwell)
processor and can achieve 3.5GHz with Intel Turbo Boost Technology 2.0.3 We use Windows server
2012 R2 and Matlab R2016b.

We divide the generation of 1,000,000 Monte Carlo paths into 10 subtasks. Therefore, each
node generates 100,000 paths that are then summed up to get the final price. The seed number of
a random number generator used in a Monte Carlo simulation sub-task is equal to the number of
node (1..10). This strategy yields identical option pricing results if the model parameter values are
not changed, an important property in model calibration. Also, this allows us to achieve identical
results, regardless of whether the calibration is done with Approaches A or B. When the model is
calibrated without distribution, then we split the problem into 10 subtasks and use the same seed
numbers as with distributed experiment, but with a single node only. In this way, we can ensure
that the number of optimization iterations is the same independently whether the problem is
distributed or not.

4.6 Results
We computed results under three experiments that were implemented according to Sections 3.1,
3.2, and 3.3 using the infrastructure described in 4.5. In all of the experiments, the random number
generators were seeded using predetermined values, meaning the results are identical. Table 1
shows the initial and final parameter values and the value of the loss-function before and after
optimization.

3 https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-general#dv3-series

2

0

0.05

-1

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1.5-0.5 10 0.500.5

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-general#dv3-series

Table 1. Initial and final parameter values and the value of the loss-function

before and after optimization.

Parameter Initial value Final value

 3 2.3579

 0.04 0.0209

 1 1.1839

 -0.8 -0.5945

 0.5 0.7609

V0 0.0324 0.0255

IV-RMSE 5.3509 1.0308

In the calibration of the model, there were 507 optimization iterations until criteria were met. The
calibration times of three experiments are reported in Table 2. First, we observe that the wall-clock
time can be clearly shortened by distributed computing: Approach A reduces wall-clock time by 80%
and Approach B by 86% in comparison to the experiment without distribution. More importantly,
in the terms of wall-clock time, approach B is 33% more efficient than Approach A, a considerably
high value. In other words, by minimizing the overhead caused by i) information transfer between
the end-user workstation and cloud and ii) iterative initializations and finalizations of computing
nodes, we can save one third of wall-clock time.

Table 2. Results on calibration times under three experiments: i) no distribution, ii) optimization with distributed

computing, so that the optimization is managed by the end-user workstation and nodes are initialized and finalized
between in every optimization iteration Approach A, and iii) optimization with Approach B, where optimization is
managed by one of the nodes in the cloud, all the information transfer happens between nodes within a cloud, and
the nodes are initialized and finalized only once.

 Wall-clock time CPU time

No distribution 1d04h18m 1d04h12m

Approach A 5h44m 1d16h43m

Approach B 3h51m 1d04h49m

 CPU time is, by construction, the lowest for the experiment without no distribution.
However, Approach B increased CPU time only by 2.2% whereas Approach B increased it by 44%! In
other words, if the overhead is defined as a difference between CPU with and without distributed
computing, the overhead is 2.2% with Approach B and 44% with the old one. Consequently, the
overhead of approach A is 20 times higher compared to Approach B. Given that charge for the cloud
service is based on CPU time, the computing costs were almost the same with distribution Approach
B and the experiment without distribution, whereas the implementation of the distribution scheme
with Approach A increased the costs substantially.

5 Discussion

In this paper, we introduced a new approach for the distribution of computationally expensive
iterative optimization problems. In this approach, the optimization algorithm is managed by one of
the nodes in the cloud and hence the communication between the end-user’s workstation and the
cloud is minimized. The calibration of an option pricing model served as a test-case. Based on our
experiment, in the terms of wall-clock time, the approach where the optimization is managed in the
cloud is 33% more efficient compared that the optimization is managed by the end-user’s
workstation. Moreover, the overhead of the later approach is 20 times higher compared to the
approach with managing optimization in the cloud. Therefore, our approach does not only make the
computations faster but also cheaper as cloud provider typically charge based on CPU hours.
 Given that the cloud infrastructure includes extremely fast interconnects between the cloud
nodes, it is safe to assume that the proposed approach (Approach B) can also readily be applied in
use cases where the size of data is large and required data transfer is non-trivial. Finally, a word
about computational environments. In principle, the proposed approach could be employed on
various environments, such as public clouds or private grids. However, the proposed approach
requires a stabile computing environment so that all the subtasks can be run simultaneously so that
all the nodes keep running. Therefore, we consider that robust cloud environments are the most
suitable platforms for this distribution approach.

6 References

Christoffersen, P. and K. Jacobs (2004), “Which GARCH model for option valuation?” Management
Science 50, 1204-1221.

Christoffersen, P. and K. Jacobs (2004), “The importance of the loss function in option
valuation”, Journal of Financial Economics 72, 291-318.

Christoffersen, P., K. Jacobs, and K. Mimouni (2010), “Volatility dynamics for the S&P500: evidence

from realized volatility daily returns, and option prices”, Review of Financial Studies 23, 3141–3189.

Duan, J.C., Simonato, J.G. (1998), “Empirical martingale simulation for asset prices”, Management
Science 44, 1218–1233.

Glasserman, P., 2013. Monte Carlo methods in financial engineering. Volume 53. Springer Science
& Business Media.

Heston, S. L. (1993). “A closed-form solution for options with stochastic volatility with applications

to bond and currency options”, Review of financial studies 6, 327–343. 

Kaeck, A., C. Alexander (2012), “Volatility dynamics for the S&P 500: Further evidence from non-

affine, multi-factor jump diffusions”, Journal of Banking & Finance 36, 3110–3121. 

Kanniainen, J., Binghuan L., and H. Yang (2014), “Estimating and using GARCH models with VIX data
for option valuation”, Journal of Banking & Finance 43, 200-211.

Kanniainen, J., and R. Piché (2013), “Stock price dynamics and option valuations under volatility
feedback effect”, Physica A: Statistical Mechanics and its Applications 392, 722-740.

Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E. (1998), “Convergence properties of the nelder–
mead simplex method in low dimensions”, SIAM Journal on optimization 9, 112–147.

Ruder, S. (2016), “An overview of gradient descent optimization algorithms”, arXiv preprint
arXiv:1609.04747.

Wilkinson, B., and M. Allen. Parallel programming: techniques and applications using networked
workstations and parallel computers. Prentice-Hall, 1999.

Yang, H. and J. Kanniainen (2017), “Jump and Volatility Dynamics for the S&P 500: Evidence for
Infinite-Activity Jumps with Non-Affine Volatility Dynamics from Stock and Option Markets”, Review
of Finance 21, 811-844. https://doi.org/10.1093/rof/rfw001

https://doi.org/10.1093/rof/rfw001

