
Distributed Calibration of Option Pricing Models with Multiple Contracts
Written on Different Underlying Assets

April 11, 2017

Juho Kanniainena,∗, Marko Koskinenb

aLaboratory of Industrial and Information Management, Tampere University of Technology, P.O. Box 541, FI-33101
Tampere, Finland

bTechila Technologies Ltd, Itsenäisyydenkatu 2, FI-33100 Tampere, Finland

Abstract

Think about a situation, where a financial institution has multiple option positions, each written on
a different underlying asset, and the unexpected arrival of market-wide news shakes the markets. In
the case of such a market-wide news arrival, all the volatility models on different underlyings must
be immediately re-calibrated for robust option pricing and hedging. Unfortunately, the calibration
of models using data on multiple underlying securities can take too long, especially, if advanced
non-affine models without analytical solutions are used. This work demonstrates how multiple
independent calibration tasks (on different underlyings) can be efficiently accelerated by Techila,
reducing the length of the wall-clock computation time from 7 hours to a few minutes. Option
pricing and calibration codes are made open for the financial community.

1. Introduction

Financial institutions can be exposed to the dynamics of hundreds of securities via derivative
contracts, which requires robust hedging strategies with well-calibrated volatility models. If ev-
erything goes smoothly without major market-wide news, the models can be re-calibrated during
nights. However, there can be important macro announcements or other market-wide news arrivals
during a trading day that affect the price processes of securities over different asset classes, in which
case one should instantly re-calibrate models for all the underlying assets. The calibration of models
can take a long time, especially if state-of-the-art non-affine volatility models are used. The extant
literature provides strong evidence that many popular variance models with closed-form solutions
for option prices, such as (Heston, 1993), are outperformed by non-affine models that, unfortunately,
are often non-tractable (Christoffersen et al., 2010; Kaeck and Alexander, 2012; Kanniainen et al.,
2014; Yang and Kanniainen, 2016). In order to make the use of these these modern non-tractable
models feasible for financial institutions, increased computationally challenged should be solved in
an efficient way.

This work elaborates how the computation time can be speeded up by distributed computing
with Techila in a situation where there are several underlying assets for which a model(s) should be
calibrated. Particularly, state-of-the-art non-affine volatility models are calibrated by minimizing
the squared differences between market and model implied volatility surfaces with Monte Carlo
methods.

∗Corresponding author
Email addresses: juho.kanniainen@tut.fi (Juho Kanniainen), marko.koskinen@techilatechnologies.com

(Marko Koskinen)
URL: www.techilatechnologies.com (Marko Koskinen)



2. Model

We use a model that can be seen as a non-affine generalization of Heston model. Let {Yt; t ≥ 0}
denote the continuously compounded returns on an underlying asset (e.g. the S&P 500 index)
and {Vt; t ≥ 0} denote the instantaneous squared volatility of the returns. Under the risk-neutral
measure Q, we assume that the return and volatility dynamics of the underlying is described by the
following stochastic differential equations:

dYt =

(
r − 1

2
Vt

)
dt+

√
VtdWY,t,

dVt = κ (θ − Vt) dt+ ξV γ
t

(
ρdWY,t +

√
1− ρ2dWV,t

)
.

(1)

WY and Wv are mutually independent Brownian motions and Y0 = y0 > 0 and V0 = v0 > 0. Here
κ is the speed of variance mean revision, θ long-run variance, ξ the volatility of variance, and ρ
the correlation between returns and volatility. Additionally, γ is the coefficient to make a model
for affine (γ = 0.5) or non-affine (otherwise). Finally, r is the risk-free interest rate, assumed to be
0.1%.

3. Monte-Carlo Pricing

We use three variance reduction methods to accurate the Monte-Carlo pricing of options. First,
Black-Scholes price serves as a control variate (see e.g. Glasserman, 2013, Ch. 4.1). Second, antithetic
variates (see e.g. Glasserman, 2013, Ch. 4.2) are used for both return and volatility processes. Third,
we implemented Empirical Martingale Simulation method, introduced in Duan and Simonato (1998).

The Monte-Carlo simulation is implemented efficiently so that one can compute a cross-section of
options with different strike prices and maturity times by one run, and therefore, the size of volatility
surface does not essentially affect the computation time. The most important factor is maturity time;
if fact, the paths are simulated according to the longest maturity time, and therefore, if a single
option contract with a long maturity time can increase the computational time considerably.

4. Calibration

As Broadie et al. (2007) argue, minimizing the error between model and market option dollar-
prices places a greater weight on expensive in-the-money and long-maturity options, whereas the
implied volatility metric provides an intuitive weighting of options across strikes and maturities.
Consequently, we minimize the error between implied volatilities rather than dollar-prices:1

IVRMSE(Θ, v0) = 100×
√

1

N

∑
i

(
IV (ft(Θ, v0))− IV (f̂i,t)

)2
, (2)

which is minimized with respect to the structural parameters Θ = {κ, θ, ξ, ρ, γ} and spot volatility
v0. Here fi is the price of the ith option given by the model and f̂i is the corresponding price of the
option observed in the market data. Moreover, N is the number of option contracts in the sample.

We use Matlab’s fminsearch function, provided in optimization toolbox, to minimize the pricing
error (Eq. 2), which uses derivative-free Nelder-Mead simplex algorithm (Lagarias et al., 1998).
Because the method itself is unconstrained, we crafted constrains in such a way that the loss function
(Eq. 2) gets very high values (1e10) if the parameters or spot variance are out of the given boundaries.

1 Implied volatility errors, on the other hand, can be approximated by scaling dollar prices by (Black, 1976) vegas
without extensive computations (see Carr and Wu, 2007; Trolle and Schwart, 2009; Kanniainen et al., 2014).

2



5. Data and Settings

Instead of using empirical data, we calibrate the model using simulated data so that actual
values are know and the accuracy of the parameter estimates can be measured. In the generation
of the data sets, 200,000 Monte-Carlo iterations were used to generate the data sets.2 Additionally,
“actual” implied volatilities are computed for the all the combinations of the following maturities
and strikes: 3, 6, 9, 12, 18, 24, 36, 60, 120, and 240 months and the K/S0 = {0.5, 0.6, . . . , 1.5},
where K is the strike price and S0 the current price of the underlying asset.

Assume that a financial institution has m implied volatilty surfaces (for m underlying asset) for
which the models should be calibrated. The parameter values used to generate implied volatility
surfaces are then computed as

x = min(max(x̄(1 + αε), xmin), xmax), (3)

where x refers to a given parameter, epsilon is a standard normal variable, and α > 0. For the data
set attached, we used α = 0.4, which creates quite different data sets. Additionally, we used the
following mean values and minimum and maximum values for the parameters provided in Table 1.
Figure 1 shows two different volatility surfaces generated by these settings.

Table 1: The mean, minimum and maximum values of parameters used in data generation.

κ θ ξ ρ γ v0

Mean 2 0.252 0.8 −0.8 0.7 0.32

Min 0.5 0.012 0.0025 −1 0 0.012

Max 6 1 2 1 1 1

20

(a)

0.3

0.32

0.34

-1

0.36

10

0.38

0.4

0.42

-0.5
0 00.5

20

(b)

0.25

0.3

0.35

0.4

-1 10

0.45

0.5

0.55

0.6

-0.5
0 00.5

Figure 1: Two volatility surfaces generated with different random parameters. The plot (a) on left hand side is based
on parameters κ = 2.0012, θ = 0.0984, ξ = 0.4188, ρ = −0.7189, γ = 0.9405, v0 = 0.1352 and the plot (b) on right hand
side is based on parameters κ = 4.0191, θ = 0.0775, ξ = 1.0235, ρ = −0.5455, γ = 0.1720, v0 = 0.0952.

The starting values of parameters used in optimization are determined as follows:

x0 = xtrue exp(ηε− η/2),

where ε is a standard normal random variable and η = 0.1. Additionally, xtrue is given by Eq (3).
That is, in order to use “good” initial values, we determine their values to be in the neighborhood
of the true values.

2We decided to use a substantially large number of iterations in data set generation to minimize Monte-Carlo errors
with the data used for model calibrations.

3



6. Infrastructure

Computations were performed in Microsoft Azure cloud using Techila Distributed Computing
Engine. The computational capacity consisted of 25 D3v2 virtual machines, which each have 4 CPU
Cores. This means that the total amount of CPU cores used in the computations was 100. Figure
2 illustrates the Techila Distributed Computing Engine architecture when using Microsoft Azure.

Figure 2: The Techila Distributed Computing Engine architecture when using Microsoft Azure.

7. Results

Figure 3 shows the option pricing errors (IVRMSE) before and after calibration procedures
for all the 100 assets. The average of initial IVRMSEs over 100 assets is 1.072 and the average
of final IVRMSE is 0.601. Figure 4 visually demonstrates three surfaces for one asset: A non-
transparent surface represents (market) data for which the model is calibrated, a transparent surface
represents the model with initial parameters, and a green surface is a calibrated model with optimized
parameters.

The CPU time used to calibrate the mode for 100 volatility surfaces was 7 h 50 m 10 s,
which is a rough approximation how long it would have taken to perform the computations on
a single CPU core machine with similar hardware specifications. If we would take into account
the overheads inherently related to distributed computing, the actual computational time would be
slightly smaller, but still non-trivial. By using 100 CPU cores in Techila Distributed Computing
Engine, the computations were completed in 5 minutes 19 seconds.

Table 2: CPU and wall clock times with different number of cores.
Amount of CPU Cores Threading CPUs per Job CPU Time Wall clock time

100 Single threaded 1 7h 50m 10s 5 m 19 s
200 Multithreaded 2 8h 13m 26s 3 m 19s
400 Multithreaded 4 9 h 46 m 39 s 2 m 11 s
800 Multithreaded 8 12 h 33 m 12 s 1 m 55 s

As the computational workload contained vectorized operations, the wall clock time could be
reduced further by utilizing MATLAB’s own multithreading functionality in the Techila Distributed

4



Figure 3: Option pricing errors (IVRMSE) before and after calibration procedures for all the 100 assets. The average
of initial IVRMSEs over 100 assets is 1.072 and the average of final IVRMSE is 0.601.

2015

0.2

0.25

-0.4

0.3

0.35

0.4

0.45

-0.3 10-0.2 -0.1 0 50.1 0.2 00.3

Figure 4: Demonstration of calibrated implied volatility surface for one asset. A non-transparent surface represents
(market) data, a non-transpanent surface represents the model with initial parameters, and a green surface a calibrated
model with optimized parameters.

5



Computational Engine. To measure the effect of these multithreading operations on performance,
three additional tests were performed in computing environments consisting of 200, 400 and 800
CPU cores, which allowed each Job to utilize 2, 4 or 8 CPU cores respectively. These results are
provided in Table 2 and demonstrated in Figure 5. As expected, this reduced the wall clock time
but also increased the total CPU time due to increased overheads related to the multithreading
operations.

Figure 5: Effect of multithreading on performance.

References

Black, F., 1976. The pricing of commodity contracts. Journal of Financial Economics 3, 167–179.
Broadie, M., Chernov, M., Johannes, M., 2007. Model specification and risk premia: Evidence from futures options.

Journal of Finance 62, 1453–1490.
Carr, P., Wu, L., 2007. Stochastic skew in currency options. Journal of Financial Economics 86, 213–247.
Christoffersen, P., Jacobs, K., Mimouni, K., 2010. Volatility dynamics for the S&P500: evidence from realized volatility,

daily returns, and option prices. Review of Financial Studies 23, 3141–3189.
Duan, J.C., Simonato, J.G., 1998. Empirical martingale simulation for asset prices. Management Science 44, 1218–1233.
Glasserman, P., 2013. Monte Carlo methods in financial engineering. volume 53. Springer Science & Business Media.
Heston, S.L., 1993. A closed-form solution for options with stochastic volatility with applications to bond and currency

options. Review of financial studies 6, 327–343.
Kaeck, A., Alexander, C., 2012. Volatility dynamics for the S&P 500: Further evidence from non-affine, multi-factor

jump diffusions. Journal of Banking & Finance 36, 3110–3121.
Kanniainen, J., Lin, B., Yang, H., 2014. Estimating and using GARCH models with VIX data for option valuation.

Journal of Banking & Finance 43, 200–211.
Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E., 1998. Convergence properties of the nelder–mead simplex

method in low dimensions. SIAM Journal on optimization 9, 112–147.
Müller, J., Kanniainen, J., Piché, R., 2013. Calibration of garch models using concurrent accelerated random search.

Applied Mathematics and Computation 221, 522–534.
Trolle, A.B., Schwart, E.S., 2009. Unspanned stochastic volatility and the pricing of commodity derivatives. Review

of Financial Studies 22, 4423–4461.
Yang, H., Kanniainen, J., 2016. Jump and volatility dynamics for the S&P 500: Evidence for infinite-activity jumps

with non-affine volatility dynamics from stock and option markets. forthcoming in Review of Finance doi:10.1093/
rof/rfw001.

6

http://dx.doi.org/10.1093/rof/rfw001
http://dx.doi.org/10.1093/rof/rfw001

	Introduction
	Model
	Monte-Carlo Pricing
	Calibration
	Data and Settings
	Infrastructure
	Results

